diff --git a/graphs_trees/graph_shortest_path/__init__.py b/graphs_trees/graph_shortest_path/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/graphs_trees/graph_shortest_path/graph_shortest_path_challenge.ipynb b/graphs_trees/graph_shortest_path/graph_shortest_path_challenge.ipynb new file mode 100644 index 0000000..517e509 --- /dev/null +++ b/graphs_trees/graph_shortest_path/graph_shortest_path_challenge.ipynb @@ -0,0 +1,255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Challenge Notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem: Find the shortest path between two nodes in a graph.\n", + "\n", + "* [Constraints](#Constraints)\n", + "* [Test Cases](#Test-Cases)\n", + "* [Algorithm](#Algorithm)\n", + "* [Code](#Code)\n", + "* [Unit Test](#Unit-Test)\n", + "* [Solution Notebook](#Solution-Notebook)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constraints\n", + "\n", + "* Is this a directional graph?\n", + " * Yes\n", + "* Could the graph have cycles?\n", + " * Yes\n", + " * Note: If the answer were no, this would be a DAG. \n", + " * DAGs can be solved with a [topological sort](http://www.geeksforgeeks.org/shortest-path-for-directed-acyclic-graphs/)\n", + "* Are the edges weighted?\n", + " * Yes\n", + " * Note: If the edges were not weighted, we could do a BFS\n", + "* Are the edges all non-negative numbers?\n", + " * Yes\n", + " * Note: Graphs with negative edges can be done with Bellman-Ford\n", + " * Graphs with negative cost cycles do not have a defined shortest path\n", + "* Do we have to check for non-negative edges?\n", + " * No\n", + "* Can we assume this is a connected graph?\n", + " * Yes\n", + "* Can we assume the inputs are valid?\n", + " * No\n", + "* Can we assume we already have a graph class?\n", + " * Yes\n", + "* Can we assume we already have a priority queue class?\n", + " * Yes\n", + "* Can we assume this fits memory?\n", + " * Yes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Cases\n", + "\n", + "The constaints state we don't have to check for negative edges, so we test with the general case.\n", + "\n", + "
\n",
+ "graph.add_edge('a', 'b', weight=5)\n",
+ "graph.add_edge('a', 'c', weight=3)\n",
+ "graph.add_edge('a', 'e', weight=2)\n",
+ "graph.add_edge('b', 'd', weight=2)\n",
+ "graph.add_edge('c', 'b', weight=1)\n",
+ "graph.add_edge('c', 'd', weight=1)\n",
+ "graph.add_edge('d', 'a', weight=1)\n",
+ "graph.add_edge('d', 'g', weight=2)\n",
+ "graph.add_edge('d', 'h', weight=1)\n",
+ "graph.add_edge('e', 'a', weight=1)\n",
+ "graph.add_edge('e', 'h', weight=4)\n",
+ "graph.add_edge('e', 'i', weight=7)\n",
+ "graph.add_edge('f', 'b', weight=3)\n",
+ "graph.add_edge('f', 'g', weight=1)\n",
+ "graph.add_edge('g', 'c', weight=3)\n",
+ "graph.add_edge('g', 'i', weight=2)\n",
+ "graph.add_edge('h', 'c', weight=2)\n",
+ "graph.add_edge('h', 'f', weight=2)\n",
+ "graph.add_edge('h', 'g', weight=2)\n",
+ "shortest_path = ShortestPath(graph)\n",
+ "result = shortest_path.find_shortest_path('a', 'i')\n",
+ "assert_equal(result, ['a', 'c', 'd', 'g', 'i'])\n",
+ "assert_equal(shortest_path.path_weight['i'], 8)\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Algorithm\n",
+ "\n",
+ "Refer to the [Solution Notebook](https://github.com/donnemartin/interactive-coding-challenges/graphs_trees/graph_shortest_path/graph_shortest_path_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%run ../../arrays_strings/priority_queue/priority_queue.py\n",
+ "%load ../../arrays_strings/priority_queue/priority_queue.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%run ../graph/graph.py\n",
+ "%load ../graph/graph.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "class ShortestPath(object):\n",
+ "\n",
+ " def __init__(self, graph):\n",
+ " # TODO: Implement me\n",
+ " pass\n",
+ "\n",
+ " def find_shortest_path(self, start_node_key, end_node_key):\n",
+ " # TODO: Implement me\n",
+ " pass"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Unit Test"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**The following unit test is expected to fail until you solve the challenge.**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# %load test_shortest_path.py\n",
+ "from nose.tools import assert_equal\n",
+ "\n",
+ "\n",
+ "class TestShortestPath(object):\n",
+ "\n",
+ " def test_shortest_path(self):\n",
+ " graph = Graph()\n",
+ " graph.add_edge('a', 'b', weight=5)\n",
+ " graph.add_edge('a', 'c', weight=3)\n",
+ " graph.add_edge('a', 'e', weight=2)\n",
+ " graph.add_edge('b', 'd', weight=2)\n",
+ " graph.add_edge('c', 'b', weight=1)\n",
+ " graph.add_edge('c', 'd', weight=1)\n",
+ " graph.add_edge('d', 'a', weight=1)\n",
+ " graph.add_edge('d', 'g', weight=2)\n",
+ " graph.add_edge('d', 'h', weight=1)\n",
+ " graph.add_edge('e', 'a', weight=1)\n",
+ " graph.add_edge('e', 'h', weight=4)\n",
+ " graph.add_edge('e', 'i', weight=7)\n",
+ " graph.add_edge('f', 'b', weight=3)\n",
+ " graph.add_edge('f', 'g', weight=1)\n",
+ " graph.add_edge('g', 'c', weight=3)\n",
+ " graph.add_edge('g', 'i', weight=2)\n",
+ " graph.add_edge('h', 'c', weight=2)\n",
+ " graph.add_edge('h', 'f', weight=2)\n",
+ " graph.add_edge('h', 'g', weight=2)\n",
+ " shortest_path = ShortestPath(graph)\n",
+ " result = shortest_path.find_shortest_path('a', 'i')\n",
+ " assert_equal(result, ['a', 'c', 'd', 'g', 'i'])\n",
+ " assert_equal(shortest_path.path_weight['i'], 8)\n",
+ "\n",
+ " print('Success: test_shortest_path')\n",
+ "\n",
+ "\n",
+ "def main():\n",
+ " test = TestShortestPath()\n",
+ " test.test_shortest_path()\n",
+ "\n",
+ "\n",
+ "if __name__ == '__main__':\n",
+ " main()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Solution Notebook\n",
+ "\n",
+ "Review the [Solution Notebook](https://github.com/donnemartin/interactive-coding-challenges/graphs_trees/graph_shortest_path/graph_shortest_path_solution.ipynb) for a discussion on algorithms and code solutions."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.4.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/graphs_trees/graph_shortest_path/graph_shortest_path_solution.ipynb b/graphs_trees/graph_shortest_path/graph_shortest_path_solution.ipynb
new file mode 100644
index 0000000..abf68c0
--- /dev/null
+++ b/graphs_trees/graph_shortest_path/graph_shortest_path_solution.ipynb
@@ -0,0 +1,355 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Solution Notebook"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Problem: Find the shortest path between two nodes in a graph.\n",
+ "\n",
+ "* [Constraints](#Constraints)\n",
+ "* [Test Cases](#Test-Cases)\n",
+ "* [Algorithm](#Algorithm)\n",
+ "* [Code](#Code)\n",
+ "* [Unit Test](#Unit-Test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Constraints\n",
+ "\n",
+ "* Is this a directional graph?\n",
+ " * Yes\n",
+ "* Could the graph have cycles?\n",
+ " * Yes\n",
+ " * Note: If the answer were no, this would be a DAG. \n",
+ " * DAGs can be solved with a [topological sort](http://www.geeksforgeeks.org/shortest-path-for-directed-acyclic-graphs/)\n",
+ "* Are the edges weighted?\n",
+ " * Yes\n",
+ " * Note: If the edges were not weighted, we could do a BFS\n",
+ "* Are the edges all non-negative numbers?\n",
+ " * Yes\n",
+ " * Note: Graphs with negative edges can be done with Bellman-Ford\n",
+ " * Graphs with negative cost cycles do not have a defined shortest path\n",
+ "* Do we have to check for non-negative edges?\n",
+ " * No\n",
+ "* Can we assume this is a connected graph?\n",
+ " * Yes\n",
+ "* Can we assume the inputs are valid?\n",
+ " * No\n",
+ "* Can we assume we already have a graph class?\n",
+ " * Yes\n",
+ "* Can we assume we already have a priority queue class?\n",
+ " * Yes\n",
+ "* Can we assume this fits memory?\n",
+ " * Yes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Test Cases\n",
+ "\n",
+ "The constaints state we don't have to check for negative edges, so we test with the general case.\n",
+ "\n",
+ "\n",
+ "graph.add_edge('a', 'b', weight=5)\n",
+ "graph.add_edge('a', 'c', weight=3)\n",
+ "graph.add_edge('a', 'e', weight=2)\n",
+ "graph.add_edge('b', 'd', weight=2)\n",
+ "graph.add_edge('c', 'b', weight=1)\n",
+ "graph.add_edge('c', 'd', weight=1)\n",
+ "graph.add_edge('d', 'a', weight=1)\n",
+ "graph.add_edge('d', 'g', weight=2)\n",
+ "graph.add_edge('d', 'h', weight=1)\n",
+ "graph.add_edge('e', 'a', weight=1)\n",
+ "graph.add_edge('e', 'h', weight=4)\n",
+ "graph.add_edge('e', 'i', weight=7)\n",
+ "graph.add_edge('f', 'b', weight=3)\n",
+ "graph.add_edge('f', 'g', weight=1)\n",
+ "graph.add_edge('g', 'c', weight=3)\n",
+ "graph.add_edge('g', 'i', weight=2)\n",
+ "graph.add_edge('h', 'c', weight=2)\n",
+ "graph.add_edge('h', 'f', weight=2)\n",
+ "graph.add_edge('h', 'g', weight=2)\n",
+ "shortest_path = ShortestPath(graph)\n",
+ "result = shortest_path.find_shortest_path('a', 'i')\n",
+ "assert_equal(result, ['a', 'c', 'd', 'g', 'i'])\n",
+ "assert_equal(shortest_path.path_weight['i'], 8)\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Algorithm\n",
+ "\n",
+ "Wikipedia's animation:\n",
+ "\n",
+ "\n",
+ "\n",
+ "Initialize the following:\n",
+ "\n",
+ "* previous = {} # Key: node key, val: prev node key, shortest path\n",
+ " * Set each node's previous node key to None\n",
+ "* path_weight = {} # Key: node key, val: weight, shortest path\n",
+ " * Set each node's shortest path weight to infinity\n",
+ "* remaining = PriorityQueue() # Queue of node key, path weight\n",
+ " * Add each node's shortest path weight to the priority queue\n",
+ "\n",
+ "* Set the start node's path_weight to 0 and update the value in remaining\n",
+ "* Loop while remaining still has items\n",
+ " * Extract the min node (node with minimum path weight) from remaining\n",
+ " * Loop through each adjacent node in the min node\n",
+ " * Calculate the new weight:\n",
+ " * Adjacent node's edge weight + the min node's path_weight \n",
+ " * If the newly calculated path is less than the adjacent node's current path_weight:\n",
+ " * Set the node's previous node key leading to the shortest path\n",
+ " * Update the adjacent node's shortest path and update the value in the priority queue\n",
+ "* Walk backwards to determine the shortest path:\n",
+ " * Start at the end node, walk the previous dict to get to the start node\n",
+ "* Reverse the list and return it\n",
+ "\n",
+ "### Complexity for array-based priority queue:\n",
+ "\n",
+ "* Time: O(v^2), where v is the number of vertices\n",
+ "* Space: O(v^2)\n",
+ "\n",
+ "This might be better than the min-heap-based variant if the graph has a lot of edges.\n",
+ "\n",
+ "O(v^2) is better than O((v + v^2) log v).\n",
+ "\n",
+ "### Complexity for min-heap-based priority queue:\n",
+ "\n",
+ "* Time: O((v + e) log v), where v is the number of vertices, e is the number of edges\n",
+ "* Space: O((v + e) log v)\n",
+ "\n",
+ "This might be better than the array-based variant if the graph is sparse."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%run ../../arrays_strings/priority_queue/priority_queue.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%run ../graph/graph.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "\n",
+ "\n",
+ "class ShortestPath(object):\n",
+ "\n",
+ " def __init__(self, graph):\n",
+ " if graph is None:\n",
+ " raise TypeError('graph cannot be None')\n",
+ " self.graph = graph\n",
+ " self.previous = {} # Key: node key, val: prev node key, shortest path\n",
+ " self.path_weight = {} # Key: node key, val: weight, shortest path\n",
+ " self.remaining = PriorityQueue() # Queue of node key, path weight\n",
+ " for key in self.graph.nodes.keys():\n",
+ " # Set each node's previous node key to None\n",
+ " # Set each node's shortest path weight to infinity\n",
+ " # Add each node's shortest path weight to the priority queue\n",
+ " self.previous[key] = None\n",
+ " self.path_weight[key] = sys.maxsize\n",
+ " self.remaining.insert(\n",
+ " PriorityQueueNode(key, self.path_weight[key]))\n",
+ "\n",
+ " def find_shortest_path(self, start_node_key, end_node_key):\n",
+ " if start_node_key is None or end_node_key is None:\n",
+ " raise TypeError('Input node keys cannot be None')\n",
+ " if (start_node_key not in self.graph.nodes or\n",
+ " end_node_key not in self.graph.nodes):\n",
+ " raise ValueError('Invalid start or end node key')\n",
+ " # Set the start node's shortest path weight to 0\n",
+ " # and update the value in the priority queue\n",
+ " self.path_weight[start_node_key] = 0\n",
+ " self.remaining.decrease_key(start_node_key, 0)\n",
+ " while self.remaining:\n",
+ " # Extract the min node (node with minimum path weight)\n",
+ " # from the priority queue\n",
+ " min_node_key = self.remaining.extract_min().obj\n",
+ " min_node = self.graph.nodes[min_node_key]\n",
+ " # Loop through each adjacent node in the min node\n",
+ " for adj_key in min_node.adj_nodes.keys():\n",
+ " # Node's path:\n",
+ " # Adjacent node's edge weight + the min node's\n",
+ " # shortest path weight\n",
+ " new_weight = (min_node.adj_weights[adj_key] +\n",
+ " self.path_weight[min_node_key])\n",
+ " # Only update if the newly calculated path is\n",
+ " # less than the existing node's shortest path\n",
+ " if self.path_weight[adj_key] > new_weight:\n",
+ " # Set the node's previous node key leading to the shortest path\n",
+ " # Update the adjacent node's shortest path and\n",
+ " # update the value in the priority queue\n",
+ " self.previous[adj_key] = min_node_key\n",
+ " self.path_weight[adj_key] = new_weight\n",
+ " self.remaining.decrease_key(adj_key, new_weight)\n",
+ " # Walk backwards to determine the shortest path:\n",
+ " # Start at the end node, walk the previous dict to get to the start node\n",
+ " result = []\n",
+ " current_node_key = end_node_key\n",
+ " while current_node_key is not None:\n",
+ " result.append(current_node_key)\n",
+ " current_node_key = self.previous[current_node_key]\n",
+ " # Reverse the list\n",
+ " return result[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Unit Test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting test_shortest_path.py\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile test_shortest_path.py\n",
+ "from nose.tools import assert_equal\n",
+ "\n",
+ "\n",
+ "class TestShortestPath(object):\n",
+ "\n",
+ " def test_shortest_path(self):\n",
+ " graph = Graph()\n",
+ " graph.add_edge('a', 'b', weight=5)\n",
+ " graph.add_edge('a', 'c', weight=3)\n",
+ " graph.add_edge('a', 'e', weight=2)\n",
+ " graph.add_edge('b', 'd', weight=2)\n",
+ " graph.add_edge('c', 'b', weight=1)\n",
+ " graph.add_edge('c', 'd', weight=1)\n",
+ " graph.add_edge('d', 'a', weight=1)\n",
+ " graph.add_edge('d', 'g', weight=2)\n",
+ " graph.add_edge('d', 'h', weight=1)\n",
+ " graph.add_edge('e', 'a', weight=1)\n",
+ " graph.add_edge('e', 'h', weight=4)\n",
+ " graph.add_edge('e', 'i', weight=7)\n",
+ " graph.add_edge('f', 'b', weight=3)\n",
+ " graph.add_edge('f', 'g', weight=1)\n",
+ " graph.add_edge('g', 'c', weight=3)\n",
+ " graph.add_edge('g', 'i', weight=2)\n",
+ " graph.add_edge('h', 'c', weight=2)\n",
+ " graph.add_edge('h', 'f', weight=2)\n",
+ " graph.add_edge('h', 'g', weight=2)\n",
+ " shortest_path = ShortestPath(graph)\n",
+ " result = shortest_path.find_shortest_path('a', 'i')\n",
+ " assert_equal(result, ['a', 'c', 'd', 'g', 'i'])\n",
+ " assert_equal(shortest_path.path_weight['i'], 8)\n",
+ "\n",
+ " print('Success: test_shortest_path')\n",
+ "\n",
+ "\n",
+ "def main():\n",
+ " test = TestShortestPath()\n",
+ " test.test_shortest_path()\n",
+ "\n",
+ "\n",
+ "if __name__ == '__main__':\n",
+ " main()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Success: test_shortest_path\n"
+ ]
+ }
+ ],
+ "source": [
+ "%run -i test_shortest_path.py"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.4.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/graphs_trees/graph_shortest_path/priority_queue.py b/graphs_trees/graph_shortest_path/priority_queue.py
new file mode 100644
index 0000000..27a8cc3
--- /dev/null
+++ b/graphs_trees/graph_shortest_path/priority_queue.py
@@ -0,0 +1,41 @@
+import sys
+
+
+class PriorityQueueNode(object):
+
+ def __init__(self, obj, key):
+ self.obj = obj
+ self.key = key
+
+ def __repr__(self):
+ return str(self.obj) + ': ' + str(self.key)
+
+
+class PriorityQueue(object):
+
+ def __init__(self):
+ self.queue = []
+
+ def insert(self, node):
+ if node is not None:
+ self.queue.append(node)
+ return self.queue[-1]
+ return None
+
+ def extract_min(self):
+ if not self.queue:
+ return None
+ minimum = sys.maxsize
+ for index, node in enumerate(self.queue):
+ if node.key < minimum:
+ minimum = node.key
+ minimum_index = index
+ node = self.queue.pop(minimum_index)
+ return node.obj
+
+ def decrease_key(self, obj, new_key):
+ for node in self.queue:
+ if node.obj is obj:
+ node.key = new_key
+ return node
+ return None
\ No newline at end of file
diff --git a/graphs_trees/graph_shortest_path/test_shortest_path.py b/graphs_trees/graph_shortest_path/test_shortest_path.py
new file mode 100644
index 0000000..237783b
--- /dev/null
+++ b/graphs_trees/graph_shortest_path/test_shortest_path.py
@@ -0,0 +1,41 @@
+from nose.tools import assert_equal
+
+
+class TestShortestPath(object):
+
+ def test_shortest_path(self):
+ graph = Graph()
+ graph.add_edge('a', 'b', weight=5)
+ graph.add_edge('a', 'c', weight=3)
+ graph.add_edge('a', 'e', weight=2)
+ graph.add_edge('b', 'd', weight=2)
+ graph.add_edge('c', 'b', weight=1)
+ graph.add_edge('c', 'd', weight=1)
+ graph.add_edge('d', 'a', weight=1)
+ graph.add_edge('d', 'g', weight=2)
+ graph.add_edge('d', 'h', weight=1)
+ graph.add_edge('e', 'a', weight=1)
+ graph.add_edge('e', 'h', weight=4)
+ graph.add_edge('e', 'i', weight=7)
+ graph.add_edge('f', 'b', weight=3)
+ graph.add_edge('f', 'g', weight=1)
+ graph.add_edge('g', 'c', weight=3)
+ graph.add_edge('g', 'i', weight=2)
+ graph.add_edge('h', 'c', weight=2)
+ graph.add_edge('h', 'f', weight=2)
+ graph.add_edge('h', 'g', weight=2)
+ shortest_path = ShortestPath(graph)
+ result = shortest_path.find_shortest_path('a', 'i')
+ assert_equal(result, ['a', 'c', 'd', 'g', 'i'])
+ assert_equal(shortest_path.path_weight['i'], 8)
+
+ print('Success: test_shortest_path')
+
+
+def main():
+ test = TestShortestPath()
+ test.test_shortest_path()
+
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file