Files
interactive-coding-challenges/graphs_trees/bst_second_largest/bst_second_largest_solution.ipynb
2020-07-10 21:02:32 -04:00

264 lines
6.6 KiB
Python

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution Notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem: Find the second largest node in a binary search tree.\n",
"\n",
"* [Constraints](#Constraints)\n",
"* [Test Cases](#Test-Cases)\n",
"* [Algorithm](#Algorithm)\n",
"* [Code](#Code)\n",
"* [Unit Test](#Unit-Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constraints\n",
"\n",
"* If this is called on a None input or a single node, should we raise an exception?\n",
" * Yes\n",
" * None -> TypeError\n",
" * Single node -> ValueError\n",
"* Can we assume we already have a Node class with an insert method?\n",
" * Yes\n",
"* Can we assume this fits memory?\n",
" * Yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Cases\n",
"\n",
"* None or single node -> Exception\n",
"\n",
"<pre>\n",
"Input:\n",
" _10_\n",
" _/ \\_ \n",
" 5 15\n",
" / \\ / \\\n",
" 3 8 12 20\n",
" / \\ \\\n",
" 2 4 30\n",
"\n",
"Output: 20\n",
"\n",
"Input:\n",
" 10\n",
" / \n",
" 5\n",
" / \\\n",
" 3 7\n",
"Output: 7\n",
"</pre>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithm\n",
"\n",
"<pre>\n",
"\n",
"If there is no right node, the second largest is the right most left subtree:\n",
"\n",
" 10\n",
" / \n",
" 5\n",
" / \\\n",
" 3 7\n",
"\n",
"If there is a right node and the right node has children, recurse to that right child:\n",
"\n",
" _10_\n",
" _/ \\_ \n",
" 5 15\n",
" / \\ / \\\n",
" 3 8 12 20\n",
" / \\ \\\n",
" 2 4 30\n",
"\n",
"Eventually we'll get to the following scenario:\n",
"\n",
" 20\n",
" \\\n",
" 30\n",
"\n",
"If the right node has no children, the second largest is the current node.\n",
"\n",
"</pre>\n",
"\n",
"Complexity:\n",
"* Time: O(h)\n",
"* Space: O(h), where h is the height of the tree"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%run ../bst/bst.py"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class Solution(Bst):\n",
"\n",
" def _find_second_largest(self, node):\n",
" if node.right is not None:\n",
" if node.right.left is not None or node.right.right is not None:\n",
" return self._find_second_largest(node.right)\n",
" else:\n",
" return node\n",
" else:\n",
" return self._find_right_most_node(node.left)\n",
"\n",
" def _find_right_most_node(self, node):\n",
" if node.right is not None:\n",
" return self._find_right_most_node(node.right)\n",
" else:\n",
" return node\n",
"\n",
" def find_second_largest(self):\n",
" if self.root is None:\n",
" raise TypeError('root cannot be None')\n",
" if self.root.right is None and self.root.left is None:\n",
" raise ValueError('root must have at least one child')\n",
" return self._find_second_largest(self.root)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit Test"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting test_bst_second_largest.py\n"
]
}
],
"source": [
"%%writefile test_bst_second_largest.py\n",
"import unittest\n",
"\n",
"\n",
"class TestBstSecondLargest(unittest.TestCase):\n",
"\n",
" def test_bst_second_largest(self):\n",
" bst = Solution(None)\n",
" self.assertRaises(TypeError, bst.find_second_largest)\n",
" root = Node(10)\n",
" bst = Solution(root)\n",
" node5 = bst.insert(5)\n",
" node15 = bst.insert(15)\n",
" node3 = bst.insert(3)\n",
" node8 = bst.insert(8)\n",
" node12 = bst.insert(12)\n",
" node20 = bst.insert(20)\n",
" node2 = bst.insert(2)\n",
" node4 = bst.insert(4)\n",
" node30 = bst.insert(30)\n",
" self.assertEqual(bst.find_second_largest(), node20)\n",
" root = Node(10)\n",
" bst = Solution(root)\n",
" node5 = bst.insert(5)\n",
" node3 = bst.insert(3)\n",
" node7 = bst.insert(7)\n",
" self.assertEqual(bst.find_second_largest(), node7)\n",
" print('Success: test_bst_second_largest')\n",
"\n",
"\n",
"def main():\n",
" test = TestBstSecondLargest()\n",
" test.test_bst_second_largest()\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Success: test_bst_second_largest\n"
]
}
],
"source": [
"%run -i test_bst_second_largest.py"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}