mirror of
https://github.com/donnemartin/interactive-coding-challenges
synced 2026-01-02 23:48:02 +00:00
208 lines
5.2 KiB
Python
208 lines
5.2 KiB
Python
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Challenge Notebook"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Problem: Implement a priority queue backed by an array.\n",
|
|
"\n",
|
|
"* [Constraints](#Constraints)\n",
|
|
"* [Test Cases](#Test-Cases)\n",
|
|
"* [Algorithm](#Algorithm)\n",
|
|
"* [Code](#Code)\n",
|
|
"* [Unit Test](#Unit-Test)\n",
|
|
"* [Solution Notebook](#Solution-Notebook)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Constraints\n",
|
|
"\n",
|
|
"* Do we expect the methods to be insert, extract_min, and decrease_key?\n",
|
|
" * Yes\n",
|
|
"* Can we assume there aren't any duplicate keys?\n",
|
|
" * Yes\n",
|
|
"* Do we need to validate inputs?\n",
|
|
" * No\n",
|
|
"* Can we assume this fits memory?\n",
|
|
" * Yes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test Cases\n",
|
|
"\n",
|
|
"### insert\n",
|
|
"\n",
|
|
"* `insert` general case -> inserted node\n",
|
|
"\n",
|
|
"### extract_min\n",
|
|
"\n",
|
|
"* `extract_min` from an empty list -> None\n",
|
|
"* `extract_min` general case -> min node\n",
|
|
"\n",
|
|
"### decrease_key\n",
|
|
"\n",
|
|
"* `decrease_key` an invalid key -> None\n",
|
|
"* `decrease_key` general case -> updated node"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Algorithm\n",
|
|
"\n",
|
|
"Refer to the [Solution Notebook](priority_queue_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"class PriorityQueueNode(object):\n",
|
|
"\n",
|
|
" def __init__(self, obj, key):\n",
|
|
" self.obj = obj\n",
|
|
" self.key = key\n",
|
|
"\n",
|
|
" def __repr__(self):\n",
|
|
" return str(self.obj) + ': ' + str(self.key)\n",
|
|
"\n",
|
|
"\n",
|
|
"class PriorityQueue(object):\n",
|
|
"\n",
|
|
" def __init__(self):\n",
|
|
" self.array = []\n",
|
|
"\n",
|
|
" def __len__(self):\n",
|
|
" return len(self.array)\n",
|
|
"\n",
|
|
" def insert(self, node):\n",
|
|
" # TODO: Implement me\n",
|
|
" pass\n",
|
|
"\n",
|
|
" def extract_min(self):\n",
|
|
" # TODO: Implement me\n",
|
|
" pass\n",
|
|
"\n",
|
|
" def decrease_key(self, obj, new_key):\n",
|
|
" # TODO: Implement me\n",
|
|
" pass"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Unit Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**The following unit test is expected to fail until you solve the challenge.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# %load test_priority_queue.py\n",
|
|
"import unittest\n",
|
|
"\n",
|
|
"\n",
|
|
"class TestPriorityQueue(unittest.TestCase):\n",
|
|
"\n",
|
|
" def test_priority_queue(self):\n",
|
|
" priority_queue = PriorityQueue()\n",
|
|
" self.assertEqual(priority_queue.extract_min(), None)\n",
|
|
" priority_queue.insert(PriorityQueueNode('a', 20))\n",
|
|
" priority_queue.insert(PriorityQueueNode('b', 5))\n",
|
|
" priority_queue.insert(PriorityQueueNode('c', 15))\n",
|
|
" priority_queue.insert(PriorityQueueNode('d', 22))\n",
|
|
" priority_queue.insert(PriorityQueueNode('e', 40))\n",
|
|
" priority_queue.insert(PriorityQueueNode('f', 3))\n",
|
|
" priority_queue.decrease_key('f', 2)\n",
|
|
" priority_queue.decrease_key('a', 19)\n",
|
|
" mins = []\n",
|
|
" while priority_queue.array:\n",
|
|
" mins.append(priority_queue.extract_min().key)\n",
|
|
" self.assertEqual(mins, [2, 5, 15, 19, 22, 40])\n",
|
|
" print('Success: test_min_heap')\n",
|
|
"\n",
|
|
"\n",
|
|
"def main():\n",
|
|
" test = TestPriorityQueue()\n",
|
|
" test.test_priority_queue()\n",
|
|
"\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" main()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Solution Notebook\n",
|
|
"\n",
|
|
"Review the [Solution Notebook](priority_queue_solution.ipynb) for a discussion on algorithms and code solutions."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|