mirror of
https://github.com/linkedin/school-of-sre
synced 2026-01-18 14:38:02 +00:00
reorganise course folders
This commit is contained in:
207
courses/level101/databases_sql/lab.md
Normal file
207
courses/level101/databases_sql/lab.md
Normal file
@@ -0,0 +1,207 @@
|
||||
**Prerequisites**
|
||||
|
||||
Install Docker
|
||||
|
||||
|
||||
**Setup**
|
||||
|
||||
Create a working directory named sos or something similar, and cd into it.
|
||||
|
||||
Enter the following into a file named my.cnf under a directory named custom.
|
||||
|
||||
|
||||
```
|
||||
sos $ cat custom/my.cnf
|
||||
[mysqld]
|
||||
# These settings apply to MySQL server
|
||||
# You can set port, socket path, buffer size etc.
|
||||
# Below, we are configuring slow query settings
|
||||
slow_query_log=1
|
||||
slow_query_log_file=/var/log/mysqlslow.log
|
||||
long_query_time=1
|
||||
```
|
||||
|
||||
|
||||
Start a container and enable slow query log with the following:
|
||||
|
||||
|
||||
```
|
||||
sos $ docker run --name db -v custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=realsecret -d mysql:8
|
||||
sos $ docker cp custom/my.cnf $(docker ps -qf "name=db"):/etc/mysql/conf.d/custom.cnf
|
||||
sos $ docker restart $(docker ps -qf "name=db")
|
||||
```
|
||||
|
||||
|
||||
Import a sample database
|
||||
|
||||
|
||||
```
|
||||
sos $ git clone git@github.com:datacharmer/test_db.git
|
||||
sos $ docker cp test_db $(docker ps -qf "name=db"):/home/test_db/
|
||||
sos $ docker exec -it $(docker ps -qf "name=db") bash
|
||||
root@3ab5b18b0c7d:/# cd /home/test_db/
|
||||
root@3ab5b18b0c7d:/# mysql -uroot -prealsecret mysql < employees.sql
|
||||
root@3ab5b18b0c7d:/etc# touch /var/log/mysqlslow.log
|
||||
root@3ab5b18b0c7d:/etc# chown mysql:mysql /var/log/mysqlslow.log
|
||||
```
|
||||
|
||||
|
||||
_Workshop 1: Run some sample queries_
|
||||
Run the following
|
||||
```
|
||||
$ mysql -uroot -prealsecret mysql
|
||||
mysql>
|
||||
|
||||
# inspect DBs and tables
|
||||
# the last 4 are MySQL internal DBs
|
||||
|
||||
mysql> show databases;
|
||||
+--------------------+
|
||||
| Database |
|
||||
+--------------------+
|
||||
| employees |
|
||||
| information_schema |
|
||||
| mysql |
|
||||
| performance_schema |
|
||||
| sys |
|
||||
+--------------------+
|
||||
|
||||
> use employees;
|
||||
mysql> show tables;
|
||||
+----------------------+
|
||||
| Tables_in_employees |
|
||||
+----------------------+
|
||||
| current_dept_emp |
|
||||
| departments |
|
||||
| dept_emp |
|
||||
| dept_emp_latest_date |
|
||||
| dept_manager |
|
||||
| employees |
|
||||
| salaries |
|
||||
| titles |
|
||||
+----------------------+
|
||||
|
||||
# read a few rows
|
||||
mysql> select * from employees limit 5;
|
||||
|
||||
# filter data by conditions
|
||||
mysql> select count(*) from employees where gender = 'M' limit 5;
|
||||
|
||||
# find count of particular data
|
||||
mysql> select count(*) from employees where first_name = 'Sachin';
|
||||
```
|
||||
|
||||
_Workshop 2: Use explain and explain analyze to profile a query, identify and add indexes required for improving performance_
|
||||
```
|
||||
# View all indexes on table
|
||||
#(\G is to output horizontally, replace it with a ; to get table output)
|
||||
mysql> show index from employees from employees\G
|
||||
*************************** 1. row ***************************
|
||||
Table: employees
|
||||
Non_unique: 0
|
||||
Key_name: PRIMARY
|
||||
Seq_in_index: 1
|
||||
Column_name: emp_no
|
||||
Collation: A
|
||||
Cardinality: 299113
|
||||
Sub_part: NULL
|
||||
Packed: NULL
|
||||
Null:
|
||||
Index_type: BTREE
|
||||
Comment:
|
||||
Index_comment:
|
||||
Visible: YES
|
||||
Expression: NULL
|
||||
|
||||
# This query uses an index, idenitfied by 'key' field
|
||||
# By prefixing explain keyword to the command,
|
||||
# we get query plan (including key used)
|
||||
mysql> explain select * from employees where emp_no < 10005\G
|
||||
*************************** 1. row ***************************
|
||||
id: 1
|
||||
select_type: SIMPLE
|
||||
table: employees
|
||||
partitions: NULL
|
||||
type: range
|
||||
possible_keys: PRIMARY
|
||||
key: PRIMARY
|
||||
key_len: 4
|
||||
ref: NULL
|
||||
rows: 4
|
||||
filtered: 100.00
|
||||
Extra: Using where
|
||||
|
||||
# Compare that to the next query which does not utilize any index
|
||||
mysql> explain select first_name, last_name from employees where first_name = 'Sachin'\G
|
||||
*************************** 1. row ***************************
|
||||
id: 1
|
||||
select_type: SIMPLE
|
||||
table: employees
|
||||
partitions: NULL
|
||||
type: ALL
|
||||
possible_keys: NULL
|
||||
key: NULL
|
||||
key_len: NULL
|
||||
ref: NULL
|
||||
rows: 299113
|
||||
filtered: 10.00
|
||||
Extra: Using where
|
||||
|
||||
# Let's see how much time this query takes
|
||||
mysql> explain analyze select first_name, last_name from employees where first_name = 'Sachin'\G
|
||||
*************************** 1. row ***************************
|
||||
EXPLAIN: -> Filter: (employees.first_name = 'Sachin') (cost=30143.55 rows=29911) (actual time=28.284..3952.428 rows=232 loops=1)
|
||||
-> Table scan on employees (cost=30143.55 rows=299113) (actual time=0.095..1996.092 rows=300024 loops=1)
|
||||
|
||||
|
||||
# Cost(estimated by query planner) is 30143.55
|
||||
# actual time=28.284ms for first row, 3952.428 for all rows
|
||||
# Now lets try adding an index and running the query again
|
||||
mysql> create index idx_firstname on employees(first_name);
|
||||
Query OK, 0 rows affected (1.25 sec)
|
||||
Records: 0 Duplicates: 0 Warnings: 0
|
||||
|
||||
mysql> explain analyze select first_name, last_name from employees where first_name = 'Sachin';
|
||||
+--------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| EXPLAIN |
|
||||
+--------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| -> Index lookup on employees using idx_firstname (first_name='Sachin') (cost=81.20 rows=232) (actual time=0.551..2.934 rows=232 loops=1)
|
||||
|
|
||||
+--------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
1 row in set (0.01 sec)
|
||||
|
||||
# Actual time=0.551ms for first row
|
||||
# 2.934ms for all rows. A huge improvement!
|
||||
# Also notice that the query involves only an index lookup,
|
||||
# and no table scan (reading all rows of table)
|
||||
# ..which vastly reduces load on the DB.
|
||||
```
|
||||
|
||||
_Workshop 3: Identify slow queries on a MySQL server_
|
||||
```
|
||||
# Run the command below in two terminal tabs to open two shells into the container.
|
||||
docker exec -it $(docker ps -qf "name=db") bash
|
||||
|
||||
# Open a mysql prompt in one of them and execute this command
|
||||
# We have configured to log queries that take longer than 1s,
|
||||
# so this sleep(3) will be logged
|
||||
mysql -uroot -prealsecret mysql
|
||||
mysql> select sleep(3);
|
||||
|
||||
# Now, in the other terminal, tail the slow log to find details about the query
|
||||
root@62c92c89234d:/etc# tail -f /var/log/mysqlslow.log
|
||||
/usr/sbin/mysqld, Version: 8.0.21 (MySQL Community Server - GPL). started with:
|
||||
Tcp port: 3306 Unix socket: /var/run/mysqld/mysqld.sock
|
||||
Time Id Command Argument
|
||||
# Time: 2020-11-26T14:53:44.822348Z
|
||||
# User@Host: root[root] @ localhost [] Id: 9
|
||||
# Query_time: 5.404938 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 1
|
||||
use employees;
|
||||
# Time: 2020-11-26T14:53:58.015736Z
|
||||
# User@Host: root[root] @ localhost [] Id: 9
|
||||
# Query_time: 10.000225 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 1
|
||||
SET timestamp=1606402428;
|
||||
select sleep(3);
|
||||
```
|
||||
|
||||
These were simulated examples with minimal complexity. In real life, the queries would be much more complex and the explain/analyze and slow query logs would have more details.
|
||||
Reference in New Issue
Block a user